Все формулы по физике за 7 класс
Содержание:
- Электростатика и электродинамика – формулы по физике
- Формулы по физике для егэ 2021 с пояснениями по заданиям
- ДИНАМИКА. Теория и формулы (кратко).
- Физика 8: все формулы и определения
- Физика 7: все формулы и определения
- Электрический ток
- Физика 11 класс. Все формулы и определения
- Колебания
- Работа, энергия, мощность
- Задания повышенного уровня сложности на 2 балла
- Шпаргалки по физике за 7 класс
- Геометрия в пространстве (стереометрия)
Электростатика и электродинамика – формулы по физике
Закон Кулона F=k∙q1∙q2/R 2 Напряженность электрического поля E=F/q Напряженность эл. поля точечного заряда E=k∙q/R 2 Поверхностная плотность зарядов σ = q/S Напряженность эл. поля бесконечной плоскости E=2πkσ Диэлектрическая проницаемость ε=E0/E Потенциальная энергия взаимод. зарядов W= k∙q1q2/R Потенциал φ=W/q Потенциал точечного заряда φ=k∙q/R Напряжение U=A/q Для однородного электрического поля U=E∙d Электроемкость C=q/U Электроемкость плоского конденсатора C=S∙ε∙ε0/d Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2 Сила тока I=q/t Сопротивление проводника R=ρ∙ℓ/S Закон Ома для участка цепи I=U/R Законы послед. соединения I1=I2=I, U1+U2=U, R1+R2=R Законы паралл. соед. U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R Мощность электрического тока P=I∙U Закон Джоуля-Ленца Q=I 2 Rt Закон Ома для полной цепи I=ε/(R+r) Ток короткого замыкания (R=0) I=ε/r Вектор магнитной индукции B=Fmax/ℓ∙I Сила Ампера Fa=IBℓsin α Сила Лоренца Fл=Bqυsin α Магнитный поток Ф=BSсos α Ф=LI Закон электромагнитной индукции Ei=ΔФ/Δt ЭДС индукции в движ проводнике Ei=ВℓΥSinα ЭДС самоиндукции Esi=-L∙ΔI/Δt Энергия магнитного поля катушки Wм=LI 2 /2 Период колебаний кол. контура T=2π ∙√LC Индуктивное сопротивление XL=ωL=2πLν Емкостное сопротивление Xc=1/ωC Действующее значение силы тока Iд=Imax/√2, Действующее значение напряжения Uд=Umax/√2 Полное сопротивление Z=√(Xc-XL) 2 +R 2
Оптика
Закон преломления света n21=n2/n1= Υ1/ Υ2 Показатель преломления n21=sin α/sin γ Формула тонкой линзы 1/F=1/d + 1/f Оптическая сила линзы D=1/F max интерференции: Δd=kλ, min интерференции: Δd=(2k+1)λ/2 Диф. решетка d∙sin φ=k λ
Квантовая физика
Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=Uзе Красная граница фотоэффекта νк = Aвых/h Импульс фотона P=mc=h/ λ=Е/с
Физика атомного ядра
Закон радиоактивного распада N=N0∙2 — t / T Энергия связи атомных ядер
t=t1/√1-υ 2 /c 2 ℓ=ℓ0∙√1-υ 2 /c 2 υ2=(υ1+υ)/1+ υ1∙υ/c 2 Е = mС 2
Формулы по физике для егэ 2021 с пояснениями по заданиям
Вход в тесты
Более 2000 тестов с видео-решениями по математике. Более 1000 — по физике.
Подготовка к ЕГЭ. Подготовка к ОГЭ (бывший ГИА).
Справочник
Формулы, теоремы, решение типовых заданий…
На нашем WiKi-справочнике есть разделы по: геометрии, стереометрии, алгебре, физике и др.
Проверь себя
Проверьте себя самостоятельно!
Насколько хорошо Вы (или ваши дети) знают предмет?
А Вы готовы к контрольной?
Записаться на занятия
Телефоны:
- +7 (910) 874 73 73 +7 (905) 194 91 19 +7 (831) 247 47 55
- По математике
- Подготовка к ЕГЭ Подготовка к ОГЭ Онлайн тесты к ЕГЭ и ОГЭ Формулы к ЕГЭ
По физике
- Подготовка к ЕГЭ Формулы для ЕГЭ Репетитор студенту
По скайпу
- Репетитор онлайн «Видео Репетитор»
Новости
- Новости образования Расписание ЕГЭ 2017 Расписание ОГЭ 2017 Расчёт баллов по ОГЭ 2015 Минимальные баллы 2015 Статьи 2012-2015
- ГИА
- Расписание ГИА 2013 Расписание ГИА 2014
- ГИА
ЕГЭ
- Расписание ЕГЭ 2015 Расписание ЕГЭ 2014 Расписание ЕГЭ 2013 ЕГЭ по физике
Обучение
- Аренда сайта Лекции онлайн Преподавателям
Стоимость О нас Контакты
За одного скидка 15%
За двоих скидка 30%!
«Ученье свет, а неученье — тьма»
Александр Васильевич Суворов
+7 (910) 874-73-73
X=X0+Υ0∙t+(a∙t 2 )/2 S= (Υ 2 —Υ0 2 ) /2а S= (Υ+Υ0) ∙t /2
Формулы по физике для ЕГЭ
Электроемкость C q U.
25.05.2017 18:03:22
2017-05-25 18:03:22
ДИНАМИКА. Теория и формулы (кратко).
Динамика – раздел физики, изучающий причины движения тел.
Первый закон Ньютона утверждает, что существуют инерциальные системы отсчёта, относительно которых тела сохраняют скорость постоянной, если на них не действуют другие тела.
Второй закон Ньютона утверждает, что ускорение, приобретаемое телом под действием силы, прямо пропорционально модулю силы и обратно пропорционально массе тела.
Третий закон Ньютона утверждает, что взаимодействующие тела действуют друг на друга с силами, векторы которых равны по модулю и противоположны по направлению.
Закон всемирного тяготения гласит: сила гравитационного притяжения двух материальных точек прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Коэффициентом пропорциональности служит гравитационная постоянная.
Закон Гука устанавливает пропорциональность модуля силы упругости модулю удлинения тела, если его деформация является упругой. Коэффициентом пропорциональности служит коэффициент жёсткости тела.
Закон Амонтона-Кулона устанавливает пропорциональность силы трения скольжения или максимальной силы трения покоя силе нормальной реакции опоры. Коэффициентом пропорциональности служит коэффициент трения.
Импульсом силы называют произведение вектора скорости на интервал времени её действия. Единица модуля импульса силы – 1 кг·м/c.
Импульсом тела (количеством движения) называют произведение массы тела на вектор его скорости. Единица модуля импульса тела – 1 кг·м/c.
Закон сохранения импульса гласит: сумма импульсов тел до их взаимодействия равна сумме импульсов этих же тел после взаимодействия, если система замкнута.
Изменение кинетической энергии тела равно работе равнодействующей всех сил. Кинетическая энергия тела, перемещающегося в пространстве без вращения, равна половине произведения его массы на квадрат скорости. Единица для измерения – 1 Дж.
Изменение потенциальной энергии тела равно взятой с противоположным знаком работе рассматриваемой потенциальной силы. Потенциальная энергия при действии силы тяжести равна произведению модуля силы тяжести на расстояние от тела до выбранного нулевого уровня энергии. Потенциальная энергия при действии силы упругости равна половине произведения коэффициента жёсткости на квадрат удлинения тела по сравнению с его недеформированным состоянием. Единица для измерения потенциальной энергии любого вида – 1 Дж.
Динамика. Таблицы.
1 файл(ы) 350.35 KB
Конспект по физике «Динамика. Теория и формулы для ЕГЭ» + шпаргалка.
Еще конспекты для 10-11 классов:
Физика 8: все формулы и определения
«Физика 8: все формулы и определения» — это Справочник по физике в 8 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 4-х страницах) и МЕЛКО (формат JPG, на 1-й странице).
1 файл(ы) 4.29 MB
Физика 8 класс. Все формулы и определения МЕЛКО на одной странице
1 файл(ы) 3.66 MB
В пособии «Физика 8: все формулы и определения» представлено 23 формулы
и определения за весь курс Физики 8 класса:
Глава 1. Тепловые явления
• § 1. Тепловое движение. температура
• § 2. Внутренняя энергия
• § 3. Способы изменения внутренней энергии тела
• § 4. Теплопроводность
• § 5. Конвекция
• § 6. Излучение
• § 7. Количество теплоты. Единицы количества теплоты
• § 8. Удельная теплоёмкость
• § 9. Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении
• § 10. Энергия топлива. Удельная теплота сгорания
• § 11. Закон сохранения и превращения энергии в механических и тепловых процессах
• § 12. Агрегатные состояния вещества
• § 13. Плавление и отвердевание кристаллических тел
• § 14. График плавления и отвердевания кристаллических тел
• § 15. Удельная теплота плавления
• § 16. Испарение. Насыщенный и ненасыщенный пар
• § 17. Поглощение энергии при испарении жидкости и выделение её при конденсации пара
• § 18. Кипение
• § 19. Влажность воздуха. Способы определения влажности воздуха
• § 20. Удельная теплота парообразования и конденсации
• § 21. Работа газа и пара при расширении
• § 22. Двигатель внутреннего сгорания
• § 23. Паровая турбина
• § 24. КПД теплового двигателя
Глава 2. Электрические явления
• § 25. Электризация тел при соприкосновении. Взаимодействие заряженных тел
• § 26. Электроскоп
• § 27. Электрическое поле
• § 28. Делимость электрического заряда. Электрон
• § 29. Строение атомов
• § 30. Объяснение электрических явлении
• § 31. Проводники, полупроводники и непроводники электричества
• § 32. Электрический ток. Источники электрического тока
• § 33. Электрическая цепь и её составные части
• § 34. Электрический ток в металлах
• § 35. Действия электрического тока
• § 36. Направление электрического тока
• § 37. Сила тока. Единицы силы тока
• § 38. Амперметр. Измерение силы тока
• § 39. Электрическое напряжение
• § 40. Единицы напряжения
• § 41. Вольтметр. Измерение напряжения
• § 42. Зависимость силы тока от напряжения
• § 43. Электрическое сопротивление проводников. Единицы сопротивления
• § 44. Закон Ома для участка цепи
• § 45. Расчёт сопротивления проводника. Удельное сопротивление
• § 46. Примеры на расчет сопротивления проводника, силы тока и напряжения
• § 47. Реостаты
• § 48. Последовательное соединение проводников
• § 49. Параллельное соединение проводников
• § 50. Работа электрического тока
• § 51. Мощность электрического тока
• § 52. Единицы работы электрического тока, применяемые на практике
• § 53. Нагревание проводников электрическим током. Закон Джоуля—Ленца
• § 54. Конденсатор
• § 55. Лампа накаливания. Электрические нагревательные приборы
• § 56. Короткое замыкание. Предохранители
Глава 3. Электромагнитные явления
• § 57. Магнитное поле
• § 58. Магнитное поле прямого тока. Магнитные линии
• § 59. Магнитное поле катушки с током. Электромагниты и их применение
• § 60. Постоянные магниты. Магнитное поле постоянных магнитов
• § 61. Магнитное поле земли
• § 62. Действие магнитного поля на проводник с током. Электрический двигатель
Глава 4. Световые явления
• § 63. Источники света. Распространение света
• § 64. Видимое движение светил
• § 65. Отражение света. Закон отражения света
• § 66. Плоское зеркало
• § 67. Преломление света. Закон преломления света
• § 68. Линзы. Оптическая сила линзы
• § 69. Изображения, даваемые линзой
• § 70. Глаз и зрение
Физика 8: все формулы. Таблица 1
Физика 8: все формулы. Таблица 2
Физика 7: все формулы и определения
«Физика 7: все формулы и определения» — это Справочник по физике в 7 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 3-х страницах) и МЕЛКО (формат JPG, на 1-й странице).
1 файл(ы) 255.55 KB
Физика 7 класс: все формулы и определения МЕЛКО на одной странице
1 файл(ы) 549.72 KB
В пособии «Физика 7: все формулы и определения» представлено 24 формулы
и определения за весь курс Физики 7 класса:
Название формулы (закона, правила) | Формулировка закона (правила) | Формула |
1. Цена деления шкалы прибора |
Для определения цены деления (ЦД) шкалы прибора необходимо: |
ЦД = (ВГ — НГ) / N
ЦД = (Б — А) / n |
2. Скорость |
Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t). |
ʋ = S / t |
3. Путь |
Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения. |
S = ʋ*t |
4. Время движения |
Время движения (t) равно отношению пути (S), пройденного телом, к скорости (ʋ) движения. |
t = S / ʋ |
5. Средняя скорость |
Средняя скорость (ʋср) равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден. |
ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …) |
6. Сила тяжести |
Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг) |
FТ = m*g |
7. Вес |
Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g). |
Р = m*g |
8. Масса |
Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g). |
т = Р / g |
9. Плотность |
Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V). |
ρ = m / V |
10. Момент силы |
Момент силы (М) равен произведению силы (F) на сё плечо (l) |
М = F*l |
11. Условие равновесия рычага |
Рычаг находится в равновесии, если плечи (l1, l2) действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил. |
a) F1 / F2 = l1 / l2
б) F1*l1 = F2*l2 |
12. Давление |
Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности |
p = F / S |
13. Сила давления |
Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S) |
F = р*S |
14. Давление однородной жидкости |
Давление жидкости (р) на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h). |
p = g ρ h |
15.Закон Архимеда |
На тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела. |
FВ = ρ*g*Vт |
16. Условие плавания тел |
Если архимедова сила (FВ) больше силы тяжести (FТ) тела, то тело всплывает. |
FВ> FТ |
17. Закон гидравлической машины |
Силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней. |
F1 / F2 = S1 / S2 |
18. Закон сообщаю-щихся сосудов |
Однородная жидкость в сообщающихся сосудах находится на одном уровне (h) |
h = const |
19. Механическая работа |
Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло. |
А = F*S |
20. Коэффициент полезного действия механизма (КПД) |
Коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП). |
ɳ = АП / АВ *100% |
21. Потенциальная энергия |
Потенциальная энергия (ЕП) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей. |
ЕП = m*g*h |
22. Кинетическая энергия |
Кинетическая энергия (ЕК) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ2). |
ЕК = m*ʋ2 / 2 |
23. Сохранение и превращение механической энергии |
Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной. |
EП + EК = const |
24. Мощность |
Мощность (N) — величина, показывающая скорость выполнения работы и равная:а) отношению работы (А) ко времени (t), за которое она выполнена;б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения. |
N = A / t
N = F*ʋ |
12 (двенадцать) самых необходимых (самых востребованных) формул по физике в 7 классе:
Электрический ток
Сила тока может быть найдена с помощью формулы:
Плотность тока:
Сопротивление проводника:
Зависимость сопротивления проводника от температуры задаётся следующей формулой:
Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):
Закономерности последовательного соединения:
Закономерности параллельного соединения:
Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:
Закон Ома для полной цепи:
Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):
Сила тока короткого замыкания:
Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:
Мощность электрического тока:
Энергобаланс замкнутой цепи
Полезная мощность или мощность, выделяемая во внешней цепи:
Максимально возможная полезная мощность источника достигается, если R = r и равна:
Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:
Мощность потерь или мощность внутри источника тока:
Полная мощность, развиваемая источником тока:
КПД источника тока:
Электролиз
Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:
Где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:
Физика 11 класс. Все формулы и определения
Формулы 7 класс
Формулы 8 класс
Формулы 9 класс
Формулы 10 класс
В пособии «Физика 11 класс. Все формулы и определения» представлено 30 тем за 11 класс.
Содержание (быстрый переход):
1 Магнитное поле и его свойства
Магнитное поле и его свойства. Опыт Ампера. Магнитное поле. Вектор магнитной индукции. Модуль вектора магнитной индукции
Сила Ампера. Сила Лоренца. Движение q в однородном магнитном поле.
Явление электромагнитной индукции (ЭМИ). Магнитный поток. Правило Ленца. Закон ЭМИ.
Самоиндукция. Проявление самоиндукции. Индуктивность. Энергия МП тока. Теория Максвелла
5 Механические колебания
Механические колебания. Условия возникновения свободных колебаний. Характеристики механических колебаний. Математический маятник. Гармонические колебания.
Фаза колебаний. Сдвиг фаз колебаний. Затухающие и вынужденные колебания
Механические волны. Причины возникновения. Продольные волны. Распространение волн в упругих средах
Колебательный контур. Электромагнитные колебания. Аналогия. Формула Томсона
Переменный ток. Активное сопротивление. Средняя мощность. Резонанс
Генерирование электроэнергии. Индукционный генератор переменного тока. Передача электроэнергии
Трансформаторы. Устройство трансформатора. Работа нагруженного трансформатора и на холостом ходу
Электромагнитные волны. Опыты Герца.
Принципы радиосвязи. Амплитудная модуляция. Детектирование. Распространение радиоволн. Радиолокация
Световые волны.
Закон отражения света. Закон преломления света
Линза. Виды линз. Оптическая сила линз. Формула тонкой линзы. Построение изображения в линзах.
Свойства световых волн. Опыты Ньютона. Интерференция света. Дифракция. Естественный свет
18 Элементы теории относительности
Элементы теории относительности. Принцип относительности. Постулаты теории. Основные следствия из теории относительности
Излучение и спектры. Виды излучений. Виды спектров. Спектральный анализ
Виды электромагнитных излучений. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи.
Световые кванты. Фотоэффект. Законы фотоэффекта.
Теория фотоэффекта. Формула Планка. Уравнение Эйнштейна. Фотоны. Корпускулярно-волновой дуализм света.
Строение атома. Опыт Резерфорда. Планетарная модель атома и ее противоречия. Постулаты Бора.
Лазеры. Индуцированное излучение. Свойства лазерного излучения. Принцип действия лазера
25 Методы наблюдения и регистрации элементарных частиц
Методы наблюдения и регистрации элементарных частиц. Счетчик Гейгера. Камера Вильсона. Пузырьковая камера. Метод толстослойных фотоэмульсий
Явление радиоактивности. Опыт Резерфорда. Свойства излучений. Закон радиоактивного распада. Изотопы.
Строение атомного ядра. Открытие нейтрона. Модель ядра. Энергия связи атомных ядер. Ядерные реакции
Деление ядер урана. Механизм деления урана. Цепные ядерные реакции. Образование плутония
Ядерный реактор. Термоядерные реакции
30 Биологическое действие радиоактивных излучений
Биологическое действие радиоактивных излучений. Поглощенная доза излучений. Экспозиционная доза. Эквивалентная доза поглощенного излучения. Радиационные эффекты
Формулы 7 класс
Формулы 8 класс
Формулы 9 класс
Формулы 10 класс
Колебания
Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:
Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:
Период колебаний вычисляется по формуле:
Частота колебаний:
Циклическая частота колебаний:
Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:
Максимальное значение скорости при гармонических механических колебаниях:
Зависимость ускорения от времени при гармонических механических колебаниях:
Максимальное значение ускорения при механических гармонических колебаниях:
Циклическая частота колебаний математического маятника рассчитывается по формуле:
Период колебаний математического маятника:
Циклическая частота колебаний пружинного маятника:
Период колебаний пружинного маятника:
Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:
Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:
Взаимосвязь энергетических характеристик механического колебательного процесса:
Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:
Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:
Циклическая частота колебаний в электрическом колебательном контуре:
Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:
Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:
Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:
Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:
Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:
Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:
Действующее значение напряжения:
Мощность в цепи переменного тока:
Трансформатор
Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:
Коэффициент трансформации вычисляется по формуле:
Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):
В неидеальном трансформаторе вводится понятие КПД:
Волны
Длина волны может быть рассчитана по формуле:
Разность фаз колебаний двух точек волны, расстояние между которыми l:
Скорость электромагнитной волны (в т.ч. света) в некоторой среде:
Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:
Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:
При этом показатель преломления некоторого вещества можно рассчитать используя формулу:
Работа, энергия, мощность
Механическая работа — это скалярная величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение. Подразумевается, что перемещение произошло в том же направлении, в котором действует сила. |
Формула работы в курсе физики за 7 класс:
A = F × S, где F — действующая сила, S — пройденный телом путь.
Единица измерения работы в СИ: джоуль (Дж).
Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.
Мощность — это скалярная величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения. |
Формула мощности:
N = A / t, где A — работа, t — время ее совершения.
Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.
N = F × v, где F — сила, v — средняя скорость тела.
Единица измерения мощности в СИ: ватт (Вт).
Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.
-
Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.
-
Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.
Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:
Кинетическая энергия |
Пропорциональна массе тела и квадрату его скорости. |
Ek = mv2/2 |
Потенциальная энергия |
Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания. |
Ep= mgh |
Полная механическая энергия |
Складывается из кинетической и потенциальной энергии. |
E = Ek+Ep |
Сохранение и превращение энергии |
Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу. |
Ek+ Ep= const |
Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.
Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии. |
Формула для расчета КПД:
где Ап— полезная работа, Аз— затраченная работа.
КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.
Удачи на экзаменах!
Задания повышенного уровня сложности на 2 балла
Задания повышенной сложности оцениваются в 2 балла. Впрочем, первая часть ЕГЭ по физике проще второй, поэтому правильнее сказать, что эти задания средние по сложности. Всего в экзамене 11 задач из этой категории: 10 из первой части, 1 – из второй. В этих заданиях необходимо проанализировать ситуацию с точки зрения физика-экспериментатора.
Первая часть ЕГЭ по физике включает в себя задания трех типов:
- Выбор 2 из 5 утверждений
- Анализ изменения величин
- Установление соответствия
Рассмотрим пример каждого типа заданий.
1) Выбор 2 из 5 утверждений.
Здесь необходимо проанализировать каждый пункт с точки зрения формул и законов физики
Важно заметить: в утверждениях никогда не встретится то, что невозможно обосновать
Выбранные варианты можно записать в любом порядке, а один балл можно получить, если выбрать одно правильное и одно неправильное утверждение.
Пример задания на выбор двух утверждений
Заметим, что пункты 1, 2, 4 связаны с температурой. Поэтому, проанализировав температуры, мы убьем сразу трех зайцев.
Запишем формулу для плотности, где M – молярная масса газа. Выразим температуру и применим ее для описания каждой точки графика.
Проанализируем полученные отношения:
- Температура 1 максимальна
- Температура 2 минимальна
- Температура 2 меньше температуры 1. Следовательно, в процессе 1-2 температура газа уменьшается. Первое утверждение верно.
- Температура 3 не является максимальной. Второе утверждение неверно.
- Отношение максимальной температуры 1 к минимальной температуре 2 равно 8. Утверждение 4 верно.
Рассмотрим утверждение 3. Из графика видим, что плотность в процессе 2-3 уменьшается. Применим формулу для массы тела:
Заметим, что масса постоянна. Так как плотность уменьшается, то объем должен увеличиваться. Утверждение 3 неверно.
Теперь проанализируем утверждение 5.
В процессе 3-1 плотность газа остается постоянной. Следовательно, объем тоже должен быть постоянным.
Работа газа зависит от увеличения или уменьшения объема. Так как объем не меняется, то работа не будет совершаться.
2) Анализ изменения величин
В этом задании описывается ситуация, затем начальные параметры меняют. Например, шарик катится с горки под действием силы тяжести, а потом массу шарика меняют. Нужно определить, как изменятся (увеличатся, уменьшатся, не изменятся) те или иные две величины.
Один балл можно получить, если вы верно определили изменение только одной величины.
Пример задания на анализ изменения величин:
Начнем со времени. Представим, что вы кидаете мячик параллельно полу с высоты колена, а потом поднимаетесь на 25 этаж своего дома и кидаете его с крыши. Будет ли он дольше лететь? Конечно, поэтому смело пишем, что время полета увеличится.
Теперь давайте разберемся с дальностью полета. Надо понимать, что эта задача – частный случай движения под углом к горизонту. Описываться эта задача будет теми же самыми уравнениями.
Важно помнить, что движение по оси OX будет постоянным. Ведь ускорение g действует только по оси OY!
Запишем уравнение для движения вдоль Ох:
Запишем уравнение для движения вдоль Ох:
Время увеличилось, скорость не изменилась. Зависимость прямо пропорциональная, поэтому путь тоже увеличится.
3) Установление соответствия
В этих заданиях необходимо установить соответствие между графиками и физическими величинами, либо между формулами и физическими величинами. Один балл можно получить при установлении одного правильного соответствия.
Пример задания на установление соответствия:
Для выполнения этого задания нужно вспомнить формулу для изменения импульса. С одной стороны, это изменение можно записать через силу и время, а с другой – через массу и изменение скорости.
Теперь вы знаете, как решать первую часть ЕГЭ по физике! Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться!
Кстати, у меня на курсах MAXIMUM тоже можно поучиться!
Шпаргалки по физике за 7 класс
В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.
.
.
Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.
Геометрия в пространстве (стереометрия)
Главная диагональ куба:
Объем куба:
Объём прямоугольного параллелепипеда:
Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):
Объём призмы:
Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):
Объём кругового цилиндра:
Площадь боковой поверхности прямого кругового цилиндра:
Объём пирамиды:
Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):
Объем кругового конуса:
Площадь боковой поверхности прямого кругового конуса:
Длина образующей прямого кругового конуса:
Объём шара:
Площадь поверхности шара (или, другими словами, площадь сферы):